Maths Formulae

Area of a Rectangle

Area of a Triangle

Area of a **Parallelogram**

= bh

Area of a Trapezium

$$\frac{1}{2} \times (a + b) \times h \text{ eight}$$
$$= \frac{1}{2}(a + b)h$$

Area of a Circle

Circumference of a Circle

Circumference of a Circle

Volume of a Cuboid

length × width × height = lwh

Volume of a Prism

Compound Measures:

 $=\pi d$

density

volume

Pythagoras' Theorem

Compound Interest

Principle amount interest rate **n**umber of times the interest is compounded

Value of Investment $= P(1 + \frac{r}{100})^n$

 $\pi \times r$ adius $\times r$ adius $\times h$ eight

 $=\pi r^2 h$

Volume of a Cylinder

$$Sin A = \frac{opposite}{hypotenuse}$$

radius

$$\cos A = \frac{a \text{djacent}}{h \text{ypotenuse}}$$

Tan
$$A = \frac{opposite}{adjacent}$$

$$\operatorname{Sin} A = \frac{o}{h}$$
 , $\operatorname{Cos} A = \frac{a}{h}$, $\operatorname{Tan} A = \frac{o}{a}$

Values of Trigonometric Functions

values of frigorioffictific Functions									
	0°	30°	45°	60°	90°				
$\sin \theta$	0	1/2	<u>1</u> √2	<u>√3</u> 2	1				
$\cos \theta$	1	<u>√3</u> 2	<u>1</u> √2	1/2	0				
tan heta	0	<u>1</u> √3	1	√3	not defined				

Maths Formulae

Area of a Rectangle

Area of a Triangle

Area of a Parallelogram

Area of a Trapezium

$$\frac{1}{2} \times (a + b) \times h \text{ eight}$$
$$= \frac{1}{2}(a + b)h$$

Area of a Circle

Circumference of a Circle

Circumference of a Circle

Volume of a Cuboid

length × width × height = lwh

Volume of a Prism

Volume of a Sphere

Volume of a Cone

 $\frac{1}{3} \times \pi \times r \text{adius} \times r \text{adius} \times h \text{eight}$ $= \frac{1}{3} \pi r^2 h$

Volume of a Cylinder

Surface Area of a Sphere

 $4 \times \pi \times r$ adius $\times r$ adius = $4\pi r^2$

Curved Surface Area of a Cone

 $\pi \times \mathbf{r}$ adius $\times \mathbf{l}$ ength = $\pi \mathbf{r} \mathbf{l}$

Volume of a Rectangular Based Pyramid

Trigonometry Formulae

$$Sin A = \frac{opposite}{hypotenuse}$$

$$\cos A = \frac{a \text{djacent}}{h \text{ypotenuse}}$$

Tan
$$A = \frac{opposite}{adjacent}$$

$$\operatorname{Sin} A = \frac{o}{h}$$
, $\operatorname{Cos} A = \frac{a}{h}$, $\operatorname{Tan} A = \frac{o}{a}$

Sine Rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine Rule

$$a^2 = b^2 + c^2 - 2bc \mathsf{Cos} A$$

Area of ANY Triangle

 $\frac{1}{2}ab$ SinC

Pythagoras' Theorem

Values of Trigonometric Functions										
	0°	30°	45°	60°	90°					
$\sin\! heta$	0	1/2	<u>1</u> √2	<u>√3</u> 2	1					
$\cos\! heta$	1	<u>√3</u> 2	<u>1</u> √2	1/2	0					
tan heta	0	<u>1</u> √3	1	√3	not defined					

Quadratic Formula

For:
$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Compound Measures: Speed

Compound Measures: Density

Compound Measures: Pressure

Probability

P(A) is Probability of outcome A P(B) is Probability of outcome B

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

 $P(A \text{ and } B) = P(A \text{ given } B)P(B)$

Compound Interest

Principle amount

interest rate

number of times the interest is compounded

Value of Investment = $P(1 + \frac{r}{100})^n$